Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338879

RESUMO

Bismuth compounds are considered relatively non-toxic, with their low solubility in aqueous solutions (e.g., biological fluids) being the major contributing factor to this property. Bismuth derivatives are widely used for the treatment of peptic ulcers, functional dyspepsia, and chronic gastritis. Moreover, the properties of bismuth compounds have also been extensively explored in two main fields of action: antimicrobial and anticancer. Despite the clinical interest of bismuth-based drugs, several side effects have also been reported. In fact, excessive acute ingestion of bismuth, or abuse for an extended period of time, can lead to toxicity. However, evidence has demonstrated that the discontinuation of these compounds usually reverses their toxic effects. Notwithstanding, the continuously growing use of bismuth products suggests that it is indeed part of our environment and our daily lives, which urges a more in-depth review and investigation into its possible undesired activities. Therefore, this review aims to update the pharmaco-toxicological properties of bismuth compounds. A special focus will be given to in vitro, in vivo, and clinical studies exploring their toxicity.


Assuntos
Compostos Organometálicos , Úlcera Péptica , Humanos , Bismuto/uso terapêutico , Bismuto/toxicidade , Compostos Organometálicos/uso terapêutico
2.
J Clin Med ; 12(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068320

RESUMO

Falls are not always considered direct adverse drug reactions (ADRs). However, due to their mechanism of action, certain drugs increase the risk of falls. This retrospective study aimed to evaluate the association between drugs and the risk of falls. An analysis of ADR reports submitted to a national pharmacovigilance database from 1992 to 2021 was performed using terms from the MedDRA dictionary. This included the word "fall" and terms related to conditions potentially predisposing patients to falls. The analysis involved examining the sex and age distribution of the population. Reports were assessed for seriousness, the class of the suspected drug, and the characterisation of fall events when they occurred. Over this period, 2217 cases were reported, with the majority occurring among females (60.71%) and the age group of 18-64 years old (38.43%). Most reports were classified as serious across all age groups, and immunomodulators (16.78%) were the most frequently reported pharmacotherapeutic class of suspected drugs. Falls were reported as ADRs in 343 cases, with fractures being the most commonly reported injuries (24.45%). In conclusion, falls can pose a significant health problem. Therefore, continuously monitoring drugs is crucial to minimise fall-associated risk factors.

3.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37631011

RESUMO

Cancer is a complex multifactorial disease whose pathophysiology involves multiple metabolic pathways, including the ubiquitin-proteasome system, for which several proteasome inhibitors have already been approved for clinical use. However, the resistance to existing therapies and the occurrence of severe adverse effects is still a concern. The purpose of this study was the discovery of novel scaffolds of proteasome inhibitors with anticancer activity, aiming to overcome the limitations of the existing proteasome inhibitors. Thus, a structure-based virtual screening protocol was developed using the structure of the human 20S proteasome, and 246 compounds from virtual databases were selected for in vitro evaluation, namely proteasome inhibition assays and cell viability assays. Compound 4 (JHG58) was shortlisted as the best hit compound based on its potential in terms of proteasome inhibitory activity and its ability to induce cell death (both with IC50 values in the low micromolar range). Molecular docking studies revealed that compound 4 interacts with key residues, namely with the catalytic Thr1, Ala20, Thr21, Lys33, and Asp125 at the chymotrypsin-like catalytic active site. The hit compound is a good candidate for additional optimization through a hit-to-lead campaign.

4.
Antibiotics (Basel) ; 12(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37508264

RESUMO

Staphylococcus aureus can exhibit resistance to various antibiotics. Among its resistance mechanisms, the active efflux of antibiotics can be seen as relevant. This study aimed to evaluate the ability of resveratrol to modulate norfloxacin resistance in S. aureus. The antimicrobial activity of resveratrol was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC). Then, the modulatory effect of resveratrol was evaluated using the MIC determination for the antibiotic or ethidium bromide in the presence and absence of resveratrol at a sub-MIC level. The MIC of norfloxacin against S. aureus SA1199B (NorA-overexpressing strain) decreased 16-fold when in the presence of resveratrol, with a similar behavior being observed for ethidium bromide. An evaluation of the ethidium bromide accumulation was also performed, showing that in the presence of resveratrol, the SA1199B strain had augmented fluorescence due to the accumulation of ethidium bromide. Altogether, the results suggested that resveratrol may act by inhibiting NorA. These in vitro data were supported by docking results, with interactions between resveratrol and the NorA efflux pump predicted to be favorable. Our findings demonstrated that resveratrol may modulate norfloxacin resistance through the inhibition of NorA, increasing the effectiveness of this antibiotic against S. aureus.

5.
Pharmaceutics ; 15(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37514064

RESUMO

Formulating low-solubility or low-permeability drugs is a challenge, particularly with the low administration volumes required in intranasal drug delivery. Nanoemulsions (NE) can solve both issues, but their production and physical stability can be challenging, particularly when a high proportion of lipids is necessary. Hence, the aim of the present work was to develop a NE with good solubilization capacity for lipophilic drugs like simvastatin and able to promote the absorption of drugs with low permeability like fosphenytoin. Compositions with high proportion of two lipids were screened and characterized. Surprisingly, one of the compositions did not require high energy methods for high droplet size homogeneity. To better understand formulation factors important for this feature, several related compositions were evaluated, and their relative cytotoxicity was screened. Optimized compositions contained a high proportion of propylene glycol monocaprylate NF, formed very homogenous NE using a low-energy phase inversion method, solubilized simvastatin at high drug strength, and promoted a faster intranasal absorption of the hydrophilic prodrug fosphenytoin. Hence, a new highly homogeneous NE obtained by a simple low-energy method was successfully developed, which is a potential alternative for industrial application for the solubilization and protection of lipophilic actives, as well as (co-)administration of hydrophilic molecules.

6.
Biomedicines ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36979790

RESUMO

Steroids constitute an important class of pharmacologically active molecules, playing key roles in human physiology. Within this group, 16E-arylideneandrostane derivatives have been reported as potent anti-cancer agents for the treatment of leukemia, breast and prostate cancers, and brain tumors. Additionally, 5α,6α-epoxycholesterol is an oxysterol with several biological activities, including regulation of cell proliferation and cholesterol homeostasis. Interestingly, pregnenolone derivatives combining these two modifications were described as potential neuroprotective agents. In this research, novel 16E-arylidene-5α,6α-epoxyepiandrosterone derivatives were synthesized from dehydroepiandrosterone by aldol condensation with different aldehydes followed by a diastereoselective 5α,6α-epoxidation. Their cytotoxicity was evaluated on tumoral and non-tumoral cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Furthermore, the assessment of the neuroprotective activity of these derivatives was performed in a dopaminergic neuronal cell line (N27), at basal conditions, and in the presence of the neurotoxin 6-hydroxydopamine (6-OHDA). Interestingly, some of these steroids had selective cytotoxic effects in tumoral cell lines, with an IC50 of 3.47 µM for the 2,3-dichlorophenyl derivative in the breast cancer cell line (MCF-7). The effects of this functionalized epoxide on cell proliferation (Ki67 staining), cell necrosis (propidium iodide staining), as well as the analysis of the nuclear area and near neighbor distance in MCF-7 cells, were analyzed. From this set of biological studies, strong evidence of the activation of apoptosis was found. In contrast, no significant neuroprotection against 6-OHDA-induced neurotoxicity was observed for the less cytotoxic steroids in N27 cells. Lastly, molecular docking simulations were achieved to verify the potential affinity of these compounds against important targets of steroidal drugs (androgen receptor, estrogen receptor α, and 5α-reductase type 2, 17α-hydroxylase-17,20-lyase and aromatase enzymes). This in silico study predicted a strong affinity between most novel steroidal derivatives and 5α-reductase and 17α-hydroxylase-17,20-lyase enzymes.

7.
Pharmaceutics ; 15(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839629

RESUMO

Epilepsy is a chronic and complex condition and is one of the most common neurological diseases, affecting about 50 million people worldwide. Pharmacological therapy has been, and is likely to remain, the main treatment approach for this disease. Although a large number of new antiseizure drugs (ASDs) has been introduced into the market in the last few years, many patients suffer from uncontrolled seizures, demanding the development of more effective therapies. Nanomedicines have emerged as a promising approach to deliver drugs to the brain, potentiating their therapeutic index. Moreover, nanomedicine has applied the knowledge of nanoscience, not only in disease treatment but also in prevention and diagnosis. In the current review, the general features and therapeutic management of epilepsy will be addressed, as well as the main barriers to overcome to obtain better antiseizure therapies. Furthermore, the role of nanomedicines as a valuable tool to selectively deliver drugs will be discussed, considering the ability of nanocarriers to deal with the less favourable physical-chemical properties of some ASDs, enhance their brain penetration, reduce the adverse effects, and circumvent the concerning drug resistance.

8.
RSC Med Chem ; 14(2): 313-331, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36846362

RESUMO

Arjunolic acid (AA) is a pentacyclic triterpenoid with promising anticancer properties. A series of novel AA derivatives containing a pentameric A-ring with an enal moiety, combined with additional modifications at C-28, were designed and prepared. The biological activity on the viability of human cancer and non-tumor cell lines was evaluated in order to identify the most promising derivatives. Additionally, a preliminary study of the structure-activity relationship was carried out. The most active derivative, derivative 26, also showed the best selectivity between malignant cells and non-malignant fibroblasts. For compound 26, the anticancer molecular mechanism of action in PANC-1 cells was further studied and the results showed that this derivative induced a cell-cycle arrest at G0/G1 phase and significantly inhibited the wound closure rate of PANC-1 cancer cells in a concentration-dependent manner. Additionally, compound 26 synergistically increased the cytotoxicity of Gemcitabine, especially at a concentration of 0.24 µM. Moreover, a preliminary pharmacological study indicated that at lower doses this compound did not demonstrate toxicity in vivo. Taken together, these findings suggest that compound 26 may be a valuable compound for the development of new pancreatic anticancer treatment, and further studies are needed to explore its full potential.

9.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144856

RESUMO

A series of novel 21E-arylidene-4-azapregn-5-ene steroids has been successfully designed, synthesized and structurally characterized, and their antiproliferative activity was evaluated in four different cell lines. Within this group, the 21E-(pyridin-3-yl)methylidene derivative exhibited significant cytotoxic activity in hormone-dependent cells LNCaP (IC50 = 10.20 µM) and T47-D cells (IC50 = 1.33 µM). In PC-3 androgen-independent cells, the steroid 21E-p-nitrophenylidene-4-azapregn-5-ene was the most potent of this series (IC50 = 3.29 µM). Considering these results, the 21E-(pyridin-3-yl)methylidene derivative was chosen for further biological studies on T47-D and LNCaP cells, and it was shown that this azasteroid seems to lead T47-D cells to apoptotic death. Finally, molecular docking studies were performed to explore the affinity of these 4-azapregnene derivatives to several steroid targets, namely 5α-reductase type 2, estrogen receptor α, androgen receptor and CYP17A1. In general, compounds presented higher affinity to 5α-reductase type 2 and estrogen receptor α.


Assuntos
Antineoplásicos , Receptores Androgênicos , Androgênios/farmacologia , Antineoplásicos/farmacologia , Azasteroides/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Colestenona 5 alfa-Redutase/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Receptor alfa de Estrogênio , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores Androgênicos/metabolismo , Relação Estrutura-Atividade
10.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144515

RESUMO

Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure-activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration-viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Quinolinas , Antineoplásicos/farmacologia , Benzoxazóis , Células CACO-2 , Corantes Fluorescentes , Humanos
11.
Drug Discov Today ; 27(10): 103328, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35907613

RESUMO

Catechol-O-methyltransferase (COMT) is an enzyme responsible for the O-methylation of biologically active catechol-based molecules. It has been associated with several neurological disorders, especially Parkinson's disease (PD), because of its involvement in catecholamine metabolism, and has been considered an important therapeutic target for central nervous system disorders. In this review, we summarize the biophysical, structural, and therapeutical relevance of COMT; the medicinal chemistry behind the development of COMT inhibitors and the application of computer-aided design to support the design of novel molecules; current methodologies for the biosynthesis, isolation, and purification of COMT; and revise existing bioanalytical approaches for the assessment of enzymatic activity in several biological matrices.


Assuntos
Inibidores de Catecol O-Metiltransferase , Doenças do Sistema Nervoso Central , Catecol O-Metiltransferase/química , Catecol O-Metiltransferase/metabolismo , Inibidores de Catecol O-Metiltransferase/química , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Catecolaminas , Catecóis/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos
12.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740499

RESUMO

Cervical cancer is the fourth leading cause of death in women worldwide, with 99% of cases associated with a human papillomavirus (HPV) infection. Given that HPV prophylactic vaccines do not exert a therapeutic effect in individuals previously infected, have low coverage of all HPV types, and have poor accessibility in developing countries, it is unlikely that HPV-associated cancers will be eradicated in the coming years. Therefore, there is an emerging need for the development of anti-HPV drugs. Considering HPV E6's oncogenic role, this protein has been proposed as a relevant target for cancer treatment. In the present work, we employed in silico tools to discover potential E6 inhibitors, as well as biochemical and cellular assays to understand the action of selected compounds in HPV-positive cells (Caski and HeLa) vs. HPV-negative (C33A) and non-carcinogenic (NHEK) cell lines. In fact, by molecular docking and molecular dynamics simulations, we found three phenolic compounds able to dock in the E6AP binding pocket of the E6 protein. In particular, lucidin and taxifolin were able to inhibit E6-mediated p53 degradation, selectively reduce the viability, and induce apoptosis in HPV-positive cells. Altogether, our data can be relevant for discovering promising leads for the development of specific anti-HPV drugs.

13.
Clin Interv Aging ; 17: 797-810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611326

RESUMO

Aducanumab is a monoclonal antibody selective for amyloid ß (Aß) aggregates. In June 2021, aducanumab became the first drug underlying the pathophysiology of Alzheimer's disease (AD) approved by the US Food and Drug Administration (FDA), under the accelerated approval pathway. The decision was based on the ability of aducanumab to remove Aß plaques, without any evidence that the Aß clearance is correlated with less cognitive or functional decline. This decision has generated a considerable debate in the scientific community, especially because the results from the two Phase 3 trials, EMERGE and ENGAGE, were divergent and, even after the post hoc analysis, the data were insufficient to prove aducanumab efficacy. Moreover, some researchers think that this approval will be an obstacle to the progress and also demonstrated concerns about aducanumab cost and its safety profile. The European Medicines Agency's rejection of aducanumab in December 2021 just brought more controversy over FDA's decision. Now, Biogen is designing the FDA's required confirmatory study, named ENVISION, which should be complete in 2026. Despite the controversy, the aducanumab showed to affect downstream tau pathology, which could open doors for a combination therapy approach for AD (anti-tau and anti-amyloid drug). This review summarizes the clinical development of aducanumab until regulatory agencies' decisions, the available trials data and the controversy over aducanumab approval for AD.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos , Estados Unidos , United States Food and Drug Administration
14.
Artigo em Inglês | MEDLINE | ID: mdl-35329224

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are the most frequently used agents to treat musculoskeletal disorders (principally by the elderly), thus raising the risk of adverse drug reactions (ADRs). This work aims to monitor NSAIDs safety profile in older people by using literature and pharmacovigilance data. Published clinical studies reporting the NSAIDs safety in elderly patients (age ≥ 65) were identified by a literature search and were then deeply analyzed. In addition, suspected ADRs reports submitted to the Portuguese Pharmacovigilance System (PPS) involving patients aged ≥65 with at least one NSAID as suspected drug were explored in detail. Most studies concluded that the risk of gastrointestinal, cardiovascular, and renal ADRs was significantly lower with cyclooxygenase-2 (COX-2)-selective NSAIDs use than with nonselective NSAIDs. The PPS data analysis showed that serious gastrointestinal ADRs occurred mostly in patients taking more than one NSAID and/or another concomitant drug that increases the incidence of these events, in the absence of gastroprotection. The results suggest that while NSAID toxicity is well understood, their safe use needs to be monitored in clinical practice. Furthermore, the pharmacovigilance data analyzed also showed that monitoring NSAIDs use in elderly remains essential to mitigate the associated risks, especially in those with comorbidities and under polytherapy.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Farmacovigilância , Sistemas de Notificação de Reações Adversas a Medicamentos , Idoso , Anti-Inflamatórios não Esteroides/efeitos adversos , Humanos , Portugal
15.
Nat Prod Res ; 36(24): 6459-6463, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35167416

RESUMO

10ß-Hydroxyestra-1,4-diene-3,17-dione (HEDD) is a natural product described as having neuroprotective activity. However, the cytotoxic properties of this quinol are barely studied. Thus, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed in six cell lines (MCF-7, T47-D, LNCaP, HepaRG, Caco-2 and NHDF). Additionally, an in vitro estrogenicity assay and a cell viability analysis together with in silico molecular docking studies were carried out in order to understand the potential mechanism of cytotoxicity. Computational predictions of its pharmacokinetic and toxicity properties were also performed. Surprisingly, HEDD displayed marked cytotoxic activity, particularly against hormone-dependent cancer cells and the flow cytometry analysis revealed that HEDD markedly reduced the viability of hepatic cancer cells. Molecular docking studies suggested a high affinity towards the estrogen receptor α and 17ß-hydroxysteroid dehydrogenase type 1. Moreover, it was predicted that HEDD may have good oral bioavailability and a low maximum tolerated dose in humans.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Células CACO-2 , Sobrevivência Celular , Antineoplásicos/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
16.
Eur J Med Chem ; 229: 114071, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34979302

RESUMO

Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated. Dyes were further assessed for their phototoxicity activity, and the most interesting ones were studied regarding cell localization and induction of morphological cell changes, genotoxicity, apoptosis and cell cycle arrest. The molecules with N-ethyl chains showed the greatest in vitro light-dependent cytotoxic effects, particularly the zwitterionic squaraine dye and the one bearing a single pyridine unit, which also exhibited a more significant interaction with human albumin. Phenotypically, the cells incubated with these squaraines became smaller and rounded after irradiation, the effects varying with the tested concentration. Genotoxic effects were observed even without irradiation, being more evident for the N-ethyl picolylamine-derived dye. The fluorescence emitted by Rhodamine 123 largely coincided with that emitted by the dyes, suggesting that they are found preferentially in mitochondria. After irradiation, an increase in the subG1 population was verified by propidium iodide-staining analysis by flow cytometry, indicative of cell death by apoptosis.


Assuntos
Aminas/química , Antineoplásicos/química , Ciclobutanos/química , Indóis/química , Fenóis/química , Fármacos Fotossensibilizantes/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Ciclobutanos/farmacologia , Humanos , Fenóis/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Propídio/química , Rodaminas/química , Albumina Sérica Humana/química , Relação Estrutura-Atividade
17.
Molecules ; 27(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35011508

RESUMO

The molecular hybridization approach has been used to develop compounds with improved efficacy by combining two or more pharmacophores of bioactive scaffolds. In this context, hybridization of various relevant pharmacophores with phenothiazine derivatives has resulted in pertinent compounds with diverse biological activities, interacting with specific or multiple targets. In fact, the development of new drugs or drug candidates based on phenothiazine system has been a promising approach due to the diverse activities associated with this tricyclic system, traditionally present in compounds with antipsychotic, antihistaminic and antimuscarinic effects. Actually, the pharmacological actions of phenothiazine hybrids include promising antibacterial, antifungal, anticancer, anti-inflammatory, antimalarial, analgesic and multi-drug resistance reversal properties. The present review summarizes the progress in the development of phenothiazine hybrids and their biological activity.


Assuntos
Desenvolvimento de Medicamentos , Fenotiazinas , Animais , Humanos , Fenotiazinas/síntese química , Fenotiazinas/química , Fenotiazinas/uso terapêutico , Relação Estrutura-Atividade
18.
Foods ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37430944

RESUMO

Members of the Lamiaceae family are considered chief sources of bioactive therapeutic agents. They are important ornamental, medicinal, and aromatic plants, many of which are used in traditional and modern medicine and in the food, cosmetic, and pharmaceutical industries. In North Africa, on the Mediterranean side, there is the following particularly interesting Lamiaceous species: Thymus hirtus Willd. sp. Algeriensis Boiss. Et Reut. The populations of this endemic plant are distributed from the subhumid to the lower arid zone and are mainly employed as ethnomedicinal remedies in the following Maghreb countries: Algeria, Libya, Morocco, and Tunisia. In fact, they have been applied as antimicrobial agents, antispasmodics, astringents, expectorants, and preservatives for several food products. The species is commonly consumed as a tea or infusion and is used against hypercholesterolemia, diabetes, respiratory ailments, heart disease, and food poisoning. These medicinal uses are related to constituents with many biological characteristics, including antimicrobial, antioxidant, anticancer, anti-ulcer, anti-diabetic, insecticidal, and anti-inflammatory activities. This review aims to present an overview of the botanical characteristics and geographical distribution of Thymus algeriensis Boiss. Et Reut and its traditional uses. This manuscript also examines the phytochemical profile and its correlation with biological activities revealed by in vitro and in vivo studies.

19.
Biomedicines ; 9(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34680559

RESUMO

Xanthine oxidase (XO) is the enzyme responsible for the conversion of endogenous purines into uric acid. Therefore, this enzyme has been associated with pathological conditions caused by hyperuricemia, such as the disease commonly known as gout. Barbiturates and their congeners thiobarbiturates represent a class of heterocyclic drugs capable of influencing neurotransmission. However, in recent years a very large group of potential pharmaceutical and medicinal applications have been related to their structure. This great diversity of biological activities is directly linked to the enormous opportunities found for chemical change off the back of these findings. With this in mind, sixteen bis-thiobarbiturates were synthesized in moderate to excellent reactional yields, and their antioxidant, anti-proliferative, and XO inhibitory activity were evaluated. In general, all bis-thiobarbiturates present a good antioxidant performance and an excellent ability to inhibit XO at a concentration of 30 µM, eight of them are superior to those observed with the reference drug allopurinol (Allo), nevertheless they were not as effective as febuxostat. The most powerful bis-thiobarbiturate within this set showed in vitro IC50 of 1.79 µM, which was about ten-fold better than Allo inhibition, together with suitable low cytotoxicity. In silico molecular properties such as drug-likeness, pharmacokinetics, and toxicity of this promising barbiturate were also analyzed and herein discussed.

20.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34451838

RESUMO

Cervical cancer (CC) is the fourth most common pathology in women worldwide and presents a high impact in developing countries due to limited financial resources as well as difficulties in monitoring and access to health services. Human papillomavirus (HPV) is the leading cause of CC, and despite the approval of prophylactic vaccines, there is no effective treatment for patients with pre-existing infections or HPV-induced carcinomas. High-risk (HR) HPV E6 and E7 oncoproteins are considered biomarkers in CC progression. Since the E6 structure was resolved, it has been one of the most studied targets to develop novel and specific therapeutics to treat/manage CC. Therefore, several small molecules (plant-derived or synthetic compounds) have been reported as blockers/inhibitors of E6 oncoprotein action, and computational-aided methods have been of high relevance in their discovery and development. In silico approaches have become a powerful tool for reducing the time and cost of the drug development process. Thus, this review will depict small molecules that are already being explored as HR HPV E6 protein blockers and in silico approaches to the design of novel therapeutics for managing CC. Besides, future perspectives in CC therapy will be briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...